ZPOI Radial Polarizer and "Z" Polarizer

Features

- Turns any linearly polarized laser to Radially polarized light
- Generates "Z" polarization
- Large aperture for most lasers
- High transmission

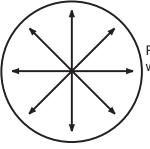
Manufactured by Nanophoton Corp.

Radial Polarizer ! (Not a circular polarizer)

The ZPol turns any linear polarized laser into Radial or Azimuthal polarized light. This Radial polarized light can in turn be made to generate Z Polarization, or polarization in the direction of light propagation.

Z Polarization is produced by a combination of ZPol and a high NA lens. The focal spot given by the lens has strong Z polarized light resulting from interference of radial polarization at the geometrical focus. In other words you have a strong longitudinal electric field that oscillates along the optical axis at the center of the focus spot.

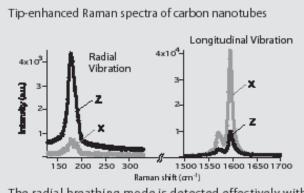
With Azimuthal polarization a strong longitudinal magnetic field is observed that oscillates along the optical axis at the center of the focus spot.


Z polarization enables one to obtain 3D orientation of molecules and crystals.

Ph: 714-898-6001 Fx: 714-897-0979 Email: sales@microlaser.com Web: www.microlaser.com

Specifcations

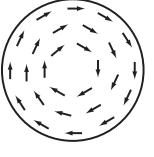
Size:	25mm dia. x 5mm thickness
Clear aperture:	10mm
Material:	Multi-order quartz waveplate
Pattern:	Four sections
Retardation error:	0.5 <u>+</u> 0.05 I as a waveplate
Optical axis error:	<u>+</u> 2 degrees
Group delay dispersion	~100-200 fs ² >100fs negligible
Transmission:	>95% typically

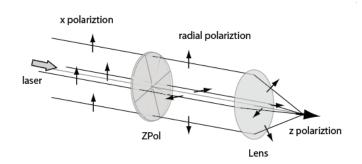

Radial polarization when aligned to the mark.

Ordering Information

Model #	Description
For low power lasers	
ZPol-532-QzM-4	For 532nm, <u>+</u> 0.5% bandwidth
ZPol-633-QzM-4	For 632nm, ±0.5% bandwidth
ZPol-785-QzM-4	For 785nm, <u>+</u> 0.5% bandwidth
For wavelengths between 450nm to 2000nm	
ZPol-λ-QzM-4	Specify λ . Bandwidth is <u>+</u> 0.5%.
For High power lasers	
ZPol-λ-QzM-4H	Specify λ . Bandwidth is <u>+</u> 0.5%.
For femto second high power lasers	
ZPol-λ-QzZ-4H	Specify λ . Bandwidth is <u>+</u> 4%.

Example of Z polarization.


Raman scattering from carbon nanotubes was measured with x- and z-polarization. The radial breathing mode of the nanotubes is specifically detected by z-polarization.


The radial breathing mode is detected effectively with z-polarization. ZPol provides a new detection technique sensitive to molecular orientation in 3D. Reference: Y. Saito et al., Chem. Phys. Lett. **410**, 136 (2005).

Courtesy from Nanophotonics lab, RIKEN, Japan

Azimuthal polarization when aligned 90 deg. to the mark.

"Z" Polarization

Specifications subject to change without notice.

