KDP / DKDP - POTASSIUM DIDEUTERIUM PHOSPHATE

Features

- Laser frequency conversion - harmonic generation for high pulse energy, low repetition ($<100 \mathrm{~Hz}$) rate lasers
- Electro-optical modulation
- Q-switching crystal for Pockels cells

Standard specifications

Flatness	$\lambda / 6$ at 633 nm
Parallelism	<20 arcsec
Surface quality	$20-10$ scratch $\&$ dig (MIL-PRF-13830B)
Perpendicularity	<5 arcmin
Angle tolerance	<30 arcmin
Aperture tolerance	$\pm 0.1 \mathrm{~mm}$
Clear aperture	90% of full aperture

Electro-Optical/Q-switching application

- EKSMA OPTICS offers highly deuterated D>96\% electro-optic crystal - DKDP for Q-switching application;
- Standard dimensions of electro-optic DKDP crystals for Q-switching are cylinders dia $9 \times 20 \mathrm{~mm}$ and dia $12 \times 24 \mathrm{~mm}$ however manufacturing of custom size and rectangular shape crystals is available;
- Gold evaporated or silver paste electrodes are available;
- Dielectric thin film AR coatings for specified laser wavelengths are available;
- Typical quarter wave voltage 3.4 kV at 1064 nm;
- Typical contrast ratio between crossed polarizers better than 1:2000;
- Damage threshold of AR coated DKDP surface $>5 \mathrm{~J} / \mathrm{cm}^{2}$ at $1064 \mathrm{~nm}, 10 \mathrm{~ns}$ pulses.

Frequency conversion applications

- DKDP crystals are used for second harmonic generation of high pulse energy low repetition rate ($<100 \mathrm{~Hz}$) Q-switched and mode-locked Nd:YAG lasers. Cut angle of crystal for operation at room temperature is 36.6° for Type 1 phase matching and 53.7° deg for Type 2 phase matching.
- DKDP crystals are used for third harmonic generation of high pulse energy Q-switched and mode-locked Nd:YAG lasers via sum frequency generation. Cut angle of crystal for operation at room temperature is 59.3° for Type 2 phase matching.
- Type 1 DKDP crystals with non-critical cut angle $\theta=90^{\circ}$ are used for fourth harmonic generation ($532 \mathrm{~nm} \rightarrow 266 \mathrm{~nm}$) of high pulse energy Q-switched and mode-locked Nd:YAG lasers. Crystal must be heated at $\sim 50^{\circ} \mathrm{C}$ temperature to match NCPM conditions.
- Type 1 KDP crystals with close to noncritical cut angle $\theta=76.5^{\circ}$ are used for fourth harmonic generation ($532 \mathrm{~nm} \rightarrow 266$ nm) of high pulse energy Q -switched and mode-locked Nd:YAG lasers. KDP has lower absorption at UV wavelengths comparing to DKDP.
- KDP thin crystals are used for second harmonic generation of $\mathrm{T}:$:Sapphire laser radiation or pulse duration measurement in single shot autocorrelators. KDP possesses ~ 2.4 times larger spectral acceptance and correspondingly smaller group velocity mismatch comparing to BBO crystal for SHG of 800 nm , what sometime is very critical parameter for femtosecond wide spectrum pulses.
- KDP crystals can be supplied by EKSMA OPTICS of aperture up to $\varnothing 80 \mathrm{~mm}$. Actually KDP remains the only solution for harmonic generation of very high intensity femtosecond Ti:Sapphire lasers featuring sub-tera Watt or tera Watt peak power pulses in large >30 mm diameter beams.

Standard Crystals list

Size, mm	Θ, deg	φ, deg	Coating							Application	Catalogue number	Price, EUR
$15 \times 15 \times 13$	36.5	45	AR/AR @ $1064+532 \mathrm{~nm}$	SHG @ 1064 nm , Type 1	DKDP-401	890						
$15 \times 15 \times 13$	53.5	0	AR/AR @ $1064+532 \mathrm{~nm}$	SHG @ 1064 nm , Type 2	DKDP-402	890						
$12 \times 12 \times 20$	59.3	0	AR/AR @ $1064+532 / 355 \mathrm{~nm}$	THG @ 1064 nm , Type 2	DKDP-403	830						
$12 \times 12 \times 20$	53.5	0	AR/AR @ $1064 / 1064+532 \mathrm{~nm}$	SHG @ 1064 nm	DKDP-404	830						
$15 \times 15 \times 20$	53.5	0	AR/AR @ $1064 / 1064+532 \mathrm{~nm}$	SHG @ 1064 nm	DKDP-405	950						
$15 \times 15 \times 20$	59.3	0	AR/AR @ $1064+532 / 355 \mathrm{~nm}$	THG @ 1064 nm	DKDP-406	950						
$12 \times 12 \times 5$	76.5	45	AR/AR @ $532 / 266 \mathrm{~nm}$	SHG @ 532 nm	KDP-401	405						
$15 \times 15 \times 7$	76.5	45	AR/AR @ $532 / 266 \mathrm{~nm}$	SHG @ 532 nm	KDP-402	480						

> Wide selection of non-standard size and cut angle DKDP crystals is available at www.eksmaoptics.com

Physical and Optical properties

Crystals		KDP	DKDP
Chemical formula		$\mathrm{KH}_{2} \mathrm{PO}_{4}$	$\mathrm{KD}_{2} \mathrm{PO}_{4}$
Symmetry		42 m	42 m
Hygroscopicity		high	high
Density, $\mathrm{g} / \mathrm{cm}^{3}$		2.332	2.355
Thermal conductivity, W/cm \times K		$\mathrm{k}_{11}=1.9 \times 10^{-2}$	$\begin{aligned} & \mathrm{k}_{11}=1.9 \times 10^{-2} \\ & \mathrm{k}_{33}=2.1 \times 10^{-2} \end{aligned}$
Thermal expansion coefficients, K^{-1}		$\begin{aligned} & \mathrm{a}_{11}=2.5 \times 10^{-5} \\ & \mathrm{a}_{33}=4.4 \times 10^{-5} \end{aligned}$	$\begin{aligned} & \mathrm{a}_{11}=1.9 \times 10^{-5} \\ & \mathrm{a}_{33}=4.4 \times 10^{-5} \end{aligned}$
Transmission range, $\mu \mathrm{m}$		0.18-1.5	0.2-2.0
Residual absorption, cm^{-1} (at $1.06 \mu \mathrm{~m}$)		0.04	0.005
Measured refractive index (at $1.06 \mu \mathrm{~m}$)		$\begin{aligned} & \mathrm{n}_{\mathrm{o}}=1.4938 \\ & \mathrm{n}_{\mathrm{e}}=1.4599 \end{aligned}$	$\begin{aligned} & \mathrm{n}_{\mathrm{o}}=1.4931 \\ & \mathrm{n}_{\mathrm{e}}=1.4582 \end{aligned}$
Sellmeier coeff., λ - wavelength in $\mu \mathrm{m}$		$\mathrm{n}^{2}=\mathrm{A}$	$\frac{D}{\lambda^{2}-E}$
A	$\begin{aligned} & \mathrm{n}_{\mathrm{o}} \\ & \mathrm{n}_{\mathrm{e}} \end{aligned}$	$\begin{aligned} & 2.259276 \\ & 2.132668 \end{aligned}$	$\begin{aligned} & 2.2409 \\ & 2.1260 \end{aligned}$
B	$\begin{aligned} & \mathrm{n}_{\mathrm{o}} \\ & \mathrm{n}_{\mathrm{e}} \end{aligned}$	$\begin{gathered} 13.00522 \\ 3.2279924 \end{gathered}$	$\begin{aligned} & 2.2470 \\ & 0.7844 \end{aligned}$
C	$\begin{aligned} & \mathrm{n}_{\mathrm{o}} \\ & \mathrm{n}_{\mathrm{e}} \end{aligned}$	$\begin{aligned} & 400 \\ & 400 \end{aligned}$	$\begin{aligned} & 126.9205 \\ & 123.4032 \end{aligned}$
D	$\begin{aligned} & \mathrm{n}_{\mathrm{o}} \\ & \mathrm{n}_{\mathrm{e}} \end{aligned}$	$\begin{gathered} 0.01008956 \\ 0.008637494 \end{gathered}$	$\begin{aligned} & 0.0097 \\ & 0.0086 \end{aligned}$
E	$\begin{aligned} & \mathrm{n}_{\mathrm{o}} \\ & \mathrm{n}_{\mathrm{e}} \end{aligned}$	$\begin{aligned} & 0.012942625 \\ & 0.012281043 \end{aligned}$	$\begin{aligned} & 0.0156 \\ & 0.0120 \end{aligned}$
Nonlinear coeff. $\mathrm{d}_{36}, \mathrm{pm} / \mathrm{V}$ (at $1.06 \mu \mathrm{~m}$)		0.43	0.40
Effective nonlinear coefficient Type 1 Type 2		$\begin{aligned} & d_{\text {ooe }}=d_{36} \times \sin \theta \times \sin 2 \varphi \\ & d_{\text {eoe }}=d_{36} \times \sin \theta \times \cos 2 \varphi \end{aligned}$	
Laser damage threshold, $\mathrm{GW} / \mathrm{cm}^{2}$ at $1.06 \mu \mathrm{~m}$		$\begin{gathered} 10 \mathrm{ps}-100 \\ 1 \mathrm{~ns}-10 \\ 15 \mathrm{~ns}-14.4 \end{gathered}$	$\begin{aligned} & 250 \mathrm{ps}-6 \\ & 10 \mathrm{~ns}-0.5 \end{aligned}$

Phase matching angles and bandwidths for SHG of 1064 nm

| Crystal | Type 1 ooe | Type 2 eoe | Type 1 ooe | Type 2 eoe |
| :--- | :---: | :---: | :---: | :---: | :---: |
| Type of phase matching | 41.2 | 59.1 | 36.6 | 53.7 |
| Cut angle θ, deg | 1.1 | 2.2 | 1.2 | 2.3 |
| Acceptances for crystal of 1 cm length (FWHM): | | | | |
| $\Delta \theta$ (angular), mrad | 10 | 11.8 | 32.5 | 29.4 |
| ΔT thermal, K | 21 | 4.5 | 6.6 | 4.2 |
| $\Delta \lambda$ spectral, nm | 28 | 25 | 25 | 25 |
| Walk off, mrad | | | | |

ADP, DADP, RDP, CDA and DCDA crystals
are available upon request!

