

NIPM-I-5 — ENGINEERING SAMPLE

2.9 – 5.5 µm and over 1.8 MHz balanced / auto-balanced IR detection module with two HgCdTe thermoelectrically cooled, optically immersed photovoltaic detectors

NIPM-I-5 is an infrared detection module designed for differential optical signal detection. The device can operate in balanced and auto-balanced mode. This detection module uses two individual detectors based on HgCdTe heterostructure. These IR detectors (signal and reference) are precisely matched to achieve a very high Common Mode Rejection Ratio (CMRR). NIPM-I-5 is dedicated to operating in systems where excess noise of the laser dominates over fundamental noise of the detectors.

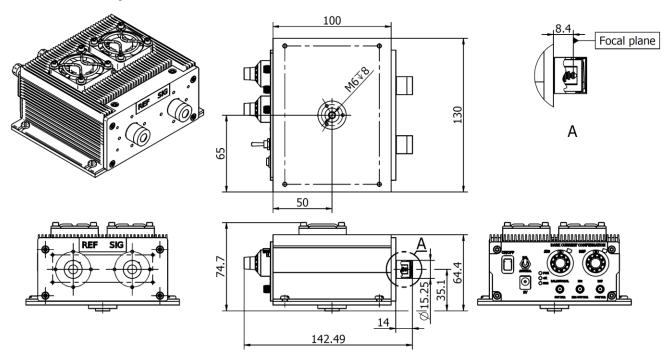
Spectral response (T_a = 20°C, SIG and REF)

Exemplary spectral detectivity, the spectral response of delivered devices may differ.

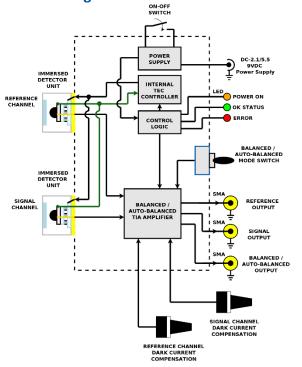
Specification ($T_a = 20$ °C, $V_b = 0$ mV)

Parameter	Typical value
Optical parameters	
Cut-on wavelength $\lambda_{\text{cut-on}}$ (10%), μ m	2.9±1.0
Peak wavelength λ _{peak} , μm	4.2±0.5
Optimum wavelength $\lambda_{ ext{opt}}$, μm	5.0
Cut-off wavelength λ _{cut-off} (10%), μm	5.5±0.3
Detectivity D* (λ_{opt} , REF), cm·Hz ^{1/2} /W	≥1.0×10 ¹⁰
Detectivity D* (λ _{opt} , SIG), cm·Hz ^{1/2} /W	≥1.0×10 ¹⁰
Output noise density v_n (100 kHz, $R_{Load} = 50 \Omega$, REF), $nV/Hz^{1/2}$	≤100
Output noise density v_n (100 kHz, $R_{Load} = 50 \Omega$, SIG), $nV/Hz^{1/2}$	≤100
Electrical parameters	
Voltage responsivity R_v (λ_{opt} , REF), V/W	≥1.0×10 ⁴
Voltage responsivity R_v (λ_{opt} , SIG), V/W	≥1.0×10 ⁴
Low cut-off frequency f _{Io} , Hz	DC
High cut-off frequency fhi, MHz	≥1.8
Output impedance R_{out} (REF, SIG, BAL/A-BAL), Ω	50
Output voltage swing V_{out} ($R_{Load} = 50 \Omega$), V	0.4
Output voltage offset Voff, mVDC	±30
CMRR balance / reference (100 kHz), dB	≤-32
CMRR auto-balance / reference (100 kHz), dB	≤-22
Power supply voltage V _{sup} , V _{DC}	+9
Power supply current I _{sup} , A	1.5
Other information	
Active element material (REF and SIG)	epitaxial HgCdTe heterostructure
Optical area A₀ (REF and SIG), mm×mm	1×1
Window (REF and SIG)	wAl_2O_3
Acceptance angle Φ (REF and SIG)	~36°
Ambient operating temperature T _a , °C	5 to 25
Reference output socket (REF)	SMA
Signal output socket (SIG)	SMA
Balanced / auto-balanced output socket	SMA
Power supply socket	DC 2.1/5.5
Mounting hole	M6
Fan	yes (2 pcs)

Features


- Two channels with similar spectral characteristics and frequencies
- Manual change balanced or autobalanced mode
- Low noise operation and high detectivity (near BLIP limit)
- Integrated with fans and thermoelectric cooler controllers
- Single power supply
- Compatible with optical accessories
- Detectors type: PVI-4TE-5-1×1-TO8-wAl₂O₃-36

Applications


QCL lasers excess noise suppression in gas analysis

Mechanical layout, mm

Schematic diagram

Included accessories

3×SMA-BNC cables, AC adaptor